aPriori Documentation
  • 👋Welcome to aPriori
  • Getting started
    • What is aPriori?
    • Installation
    • Quickstart
  • Fundamentals and usage
    • aPriori Fundamentals
      • Data Formatting
      • Cut a 3D scalar
      • Filter a 3D scalar field
      • Initialize a DNS field
      • Data visualization
      • Cut a DNS field
      • Filter a DNS field
    • Machine Learning Tutorials
      • Data-Driven Closure for Turbulence-Chemistry interaction
      • Dynamic Data-Driven Smagorinky Closure for LES
  • API guide
    • Field3D
      • Field3D.build_attributes_list
      • Field3D.check_valid_attribute
      • Field3D.compute_chemical_timescale
      • Field3D.compute_kinetic_energy
      • Field3D.compute_mixing_timescale
      • Field3D.compute_residual_kinetic_energy
      • Field3D.compute_residual_dissipation_rate
      • Field3D.compute_reaction_rates
      • Field3D.compute_reaction_rates_batch
      • Field3D.compute_strain_rate
      • Field3D.compute_tau_r
      • Field3D.compute_velocity_module
      • Field3D.cut
      • Field3D.filter_favre
      • Field3D.filter
      • Field3D.find_path
      • Field3D.plot_x_midplane
      • Field3D.plot_y_midplane
      • Field3D.plot_z_midplane
      • Field3D.print_attributes
      • Field3D.update
    • Scalar3D
      • Scalar3D.is_light_mode
      • Scalar3D.reshape_3d
      • Scalar3D.reshape_column
      • Scalar3D.reshape_line
      • Scalar3D.cut
      • Scalar3D.filter_gauss
      • Scalar3D.plot_x_midplane
      • Scalar3D.plot_y_midplane
      • Scalar3D.plot_z_midplane
    • Mesh3D
  • BIBLIOGRAPHY
Powered by GitBook
On this page
  • Field3D.compute_kinetic_energy(self):
  • Description
  • Parameters
  • Returns
  1. API guide
  2. Field3D

Field3D.compute_kinetic_energy

PreviousField3D.compute_chemical_timescaleNextField3D.compute_mixing_timescale

Last updated 1 year ago

Field3D.compute_kinetic_energy(self):


Description

Computes the kinetic energy of the velocity field.

This function calculates the kinetic energy of the velocity field. The closure model is determined based on the filter size: if the filter size is 1, DNS (Direct Numerical Simulation) is assumed; otherwise, LES (Large Eddy Simulation) is assumed. The function checks if the attribute Kappa_DNS or Kappa_LES exists and uses its value if available. If not, it computes the kinetic energy using the U_X, U_Y, and U_Z components of the velocity field.

The computed kinetic energy is saved to a file, and the object's state is updated after the computation.

Parameters

  • self (object): The object instance containing the velocity field components and other relevant attributes.

Returns

None